

Global Salmon Feed Sourcing Criteria

Near-term, feasible actions that maximize impact for resilient salmon supply chains

February 2025

C ~ O ~ N ~ T ~ E ~ N ~ T ~ S

Introduction and background

Overview of sourcing criteria

Sourcing criteria feasibility assessment

Soy

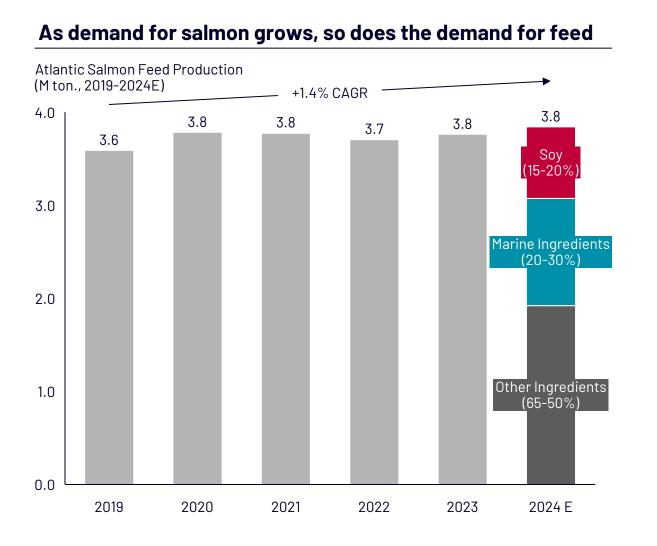
Marine ingredients

Novel ingredients

Life cycle assessments

With steady growth over the past decade and continued expansion ahead, the salmon industry is an ideal testing ground for scalable change

By 2050, the global population is expected to grow by 21%, **doubling protein demand**


Salmon production is set to surge by 40% by 2033, and continue its growth trend Salmon production is highly concentrated (~75% Norway and Chile), while consumption is primarily clustered in the U.S. and Europe (~50% of exports)

The salmon industry is an ideal testing ground to achieve change at scale

Salmon feed production is growing, with practices related to soy-based ingredients and marine products posing sustainability challenges

Salmon feed practices can carry sustainability challenges

Soy agriculture can contribute to **land conversion** in critical South American biomes

Not all fisheries are managed sustainably, and

sustainable production levels may not meet future aquaculture demand

Marine ingredients

In salmon production, **feed is the largest contributor to GHG emissions,** representing ~72% of at-harvest footprint

To enhance sustainability in the salmon industry, buyers naturally focus their efforts on advancing sustainable salmon feed in Norway and Chile

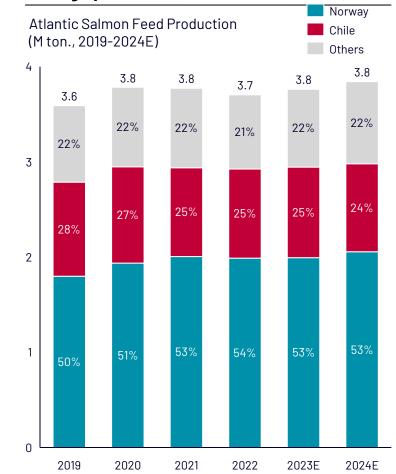
Atlantic Salmon Global Production

TNC has identified sustainability challenges in salmon production; addressing feed is a top opportunity

Feed

production

Farming


- ~72% of total salmon production emissions¹
- Potential **overfishing** of fish required to make **FM/FO**
- By-catch of vulnerable species and biodiversity & habitat impacts in FM/F0 fishing
- Potential **land deforestation and conversion** for soy production

- ~12% of total salmon production emissions¹
- Fish escapes that could imbalance ecosystems
- **Disease** and subsequent **use of** antibiotics & parasiticides
- Some regions have low or decreasing **social license to operate**

The broader market is highly consolidated in Norway and Chile both in production...

...and feed production, making large-scale change possible

Note: Other producers include Canada, Australia, Faroe Islands, Iceland, Russia, Ireland, USA, Denmark, Switzerland, Korea, Spain, Sweden and Turkey. Note: Atlantic salmon represents 98% of Norway salmonid production and 80% of Chile salmonid production; 1. Approximate percentage of emissions using as reference an LCA assessment for Scottish Atlantic salmon Source: Kontali data, Lit search

Players across the value chain have made commitments that, in theory, should improve the sustainability of salmon feed

Increased sourcing of deforestation- and conversion-free or certified soy

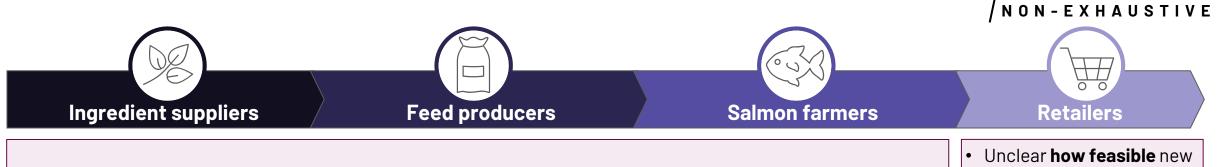
Increased ingredient traceability

Adoption of marine ingredient certifications

Reductions in fish forage dependency ratio

Reductions in carbon footprint

Adoption of aquaculture industry standards (BAP, ASC)


70% of market share with commitments

68% of market share with commitments

25 of top 30 players with commitments

Nonetheless, despite good faith efforts, misalignment across the value chain hinders the broader adoption of sustainable feed practices

Variation in requirements from different customers regarding sustainability priorities

Unclear **how feasible** new requirements are for upstream suppliers

- Unclear cost implications of implementing sustainable feed specifications and their potential impact across the value chain
- Unclear incentives for adopting sustainable feed specifications (will they command market premiums or be required as a 'right to play'?)
- Lack of clarity on the effort required and time needed to meet the specifications
- Long revision timelines for aquaculture feed standards

Value chain players must align to develop consistent expectations on sustainability to reach the necessary scale for significant impact $\mathsf{C} ~\mathsf{O} ~\mathsf{N} ~\mathsf{T} ~\mathsf{E} ~\mathsf{N} ~\mathsf{T} ~\mathsf{S}$

Introduction and background

Overview of sourcing criteria

Sourcing criteria feasibility assessment

Soy

Marine ingredients

Novel ingredients

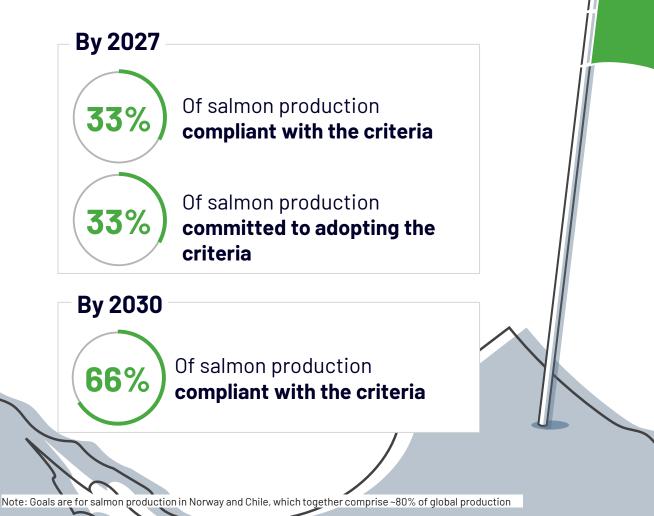
Life cycle assessments

To support value chain commitments, TNC has identified the highest-impact feed criteria that companies can integrate into their specifications

- Soy supplier:
 - Suppliers with 2025 DCF commitments with defined cut-off date that includes high-risk geographies
 - Progress reporting against commitments (% traced to farm and % DCF)
 - **Third-party verification** of traceability and DCF data
- Soy product:
 - 100% verifiable DCF soy (no credits) with cut-off date of December 2020
 - 100% legally-produced

- 100% FM/FO sourced from MSC-certified fisheries, MarinTrust, or other GSSI recognized standards
 - If MarinTrust certified, fisheries must make progress according to ASC's minimum sustainability level (MSL) framework
 - Credible FIPs making demonstrable progress are accepted as stepping-stone
- 100% of vessels with electronic monitoring systems in place

- Feed with an FFDR<1 for both FM and FO through increased use of byproducts and sustainable novel and alternative ingredients
- LCA required at regular intervals for all new ingredients, and feed footprint factored into formulation decisions



Carbon footprint

- LCA measurements for feed and novel ingredients, including carbon footprint, and conducted via globallyrecognized methodology*
- Carbon footprint for feed must not exceed an absolute upper limit per kilogram**

It is ambitious—and achievable—for the industry to set goals for wide implementation of these criteria

TNC would like to see:

TNC sees opportunity to work with stakeholders to drive widespread implementation of the criteria

> We recognize that stakeholders may face **region- or ingredientspecific challenges** in criteria implementation

However, we believe the criteria are feasible and can drive significant **conservation outcomes** Compliance with the criteria by 2030 drives significant transformation in the salmon industry and contributes to global conservation outcomes

Soy-based ingredients

66% goal for salmon feed to be using DCF soy

This accounts for **0.5M tons** of DCF soy sourced from

0.3M ha. managed with environmental responsibility

Marine ingredients

66% goal for salmon feed to be using certified & EM marine ingredients

10% increase in certifications – additional 2.9M tons of certified forage fish

16% increase in electronically monitored forage fish – additional 4.8M tons

Novel ingredients

11%

expected reduced demand of forage fish for salmon feed – reducing usage of **3.2M tons**

Life Cycle Assessment

11%

expected reduced CO₂e emissions vs current industry average – avoiding 635 Mt CO₂e

Note: Benefits of Electronic Monitoring are estimated based on large-scale adoption in Peru. Benefits of novel ingredients are calculated assuming a 5% inclusion rate. Life Cycle Assessment benefits are projected with the assumption that 66% of the industry complies with the BAP Vanguard ceiling. EM: Electronically Monitored. Goals are for salmon production in Norway and Chile, which together comprise ~80% of global production

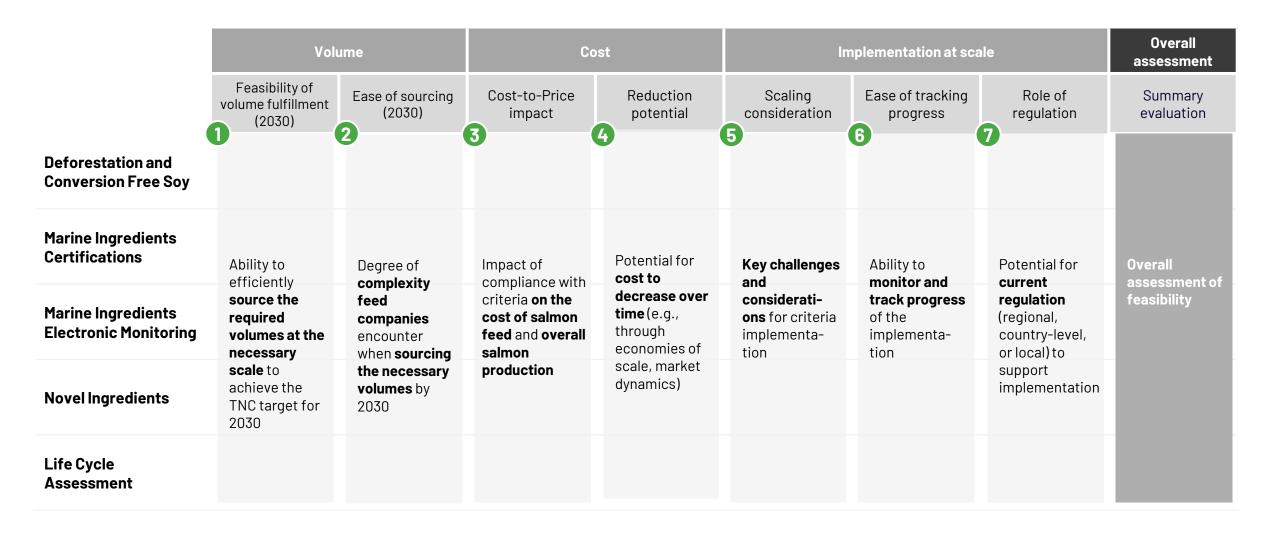
C ~ O ~ N ~ T ~ E ~ N ~ T ~ S

Introduction and background

Overview of sourcing criteria

Sourcing criteria feasibility assessment

Soy


Marine ingredients

Novel ingredients

Life cycle assessments

Through research, financial modeling, stakeholder outreach, and volume analysis, we tested the feasibility of the criteria across multiple categories

$\mathsf{C} ~\mathsf{O} ~\mathsf{N} ~\mathsf{T} ~\mathsf{E} ~\mathsf{N} ~\mathsf{T} ~\mathsf{S}$

Introduction and background

Overview of sourcing criteria

Sourcing criteria feasibility assessment

Soy

Marine ingredients

Novel ingredients

Life cycle assessments

Feasibility assessment: DCF soy

	Volume		Cost		Implementation at scale			Overall assessment
,	Feasibility of volume fulfillment (2030)	Ease of sourcing (2030)	Cost-to-Price impact	Medium-term reduction potential	Scaling considerations	Ease of tracking progress	Role of regulation	Summary evaluation
DCF Soy	•	٠	•	•	•	•	•	٠
Marine Ingredients Certifications	٠	•	•	٠	•	•	•	•
Marine Ingredients EM	٠		•	٠			•	•
Novel Ingredients	٠	٠		٩	٩	٩	٠	•
LCA	•	•	•	Not applicable	•	•		٠

DCF-certified soy volumes are enough to support 100% of salmon feed sourcing, making the criteria's feasibility at scale achievable

PRELIMINARY

represents a small fraction of total supply Total global soy production 2023 = 394.7 M ton (100%) Direct supplier = 216 (55%)Certified DCF¹ = 8 (2%)Estimated future soy demand for salmon feed is Salmon feed 0.9M ton by 2030 2023=0.6 Indirect supplier = 177 (0.2% (45%)

The soy industry is vast; salmon feed

Note: not to scale

Feed criteria – Soy suppliers and product

Soy supplier:

Suppliers with **2025 DCF commitments** with **defined cut-off date** that includes high-risk geographies

Progress reporting against commitments (% traced to farm and % DCF)

Third-party verification of traceability and DCF data

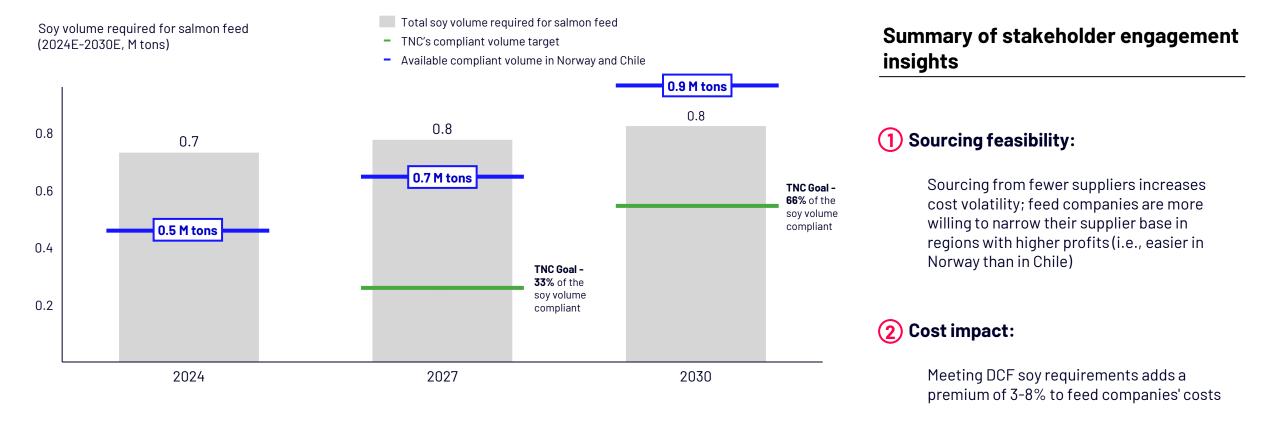
8

Soy product:

100% verifiable DCF soy (no credits) with cut-off date of December 2020

100% legally-produced

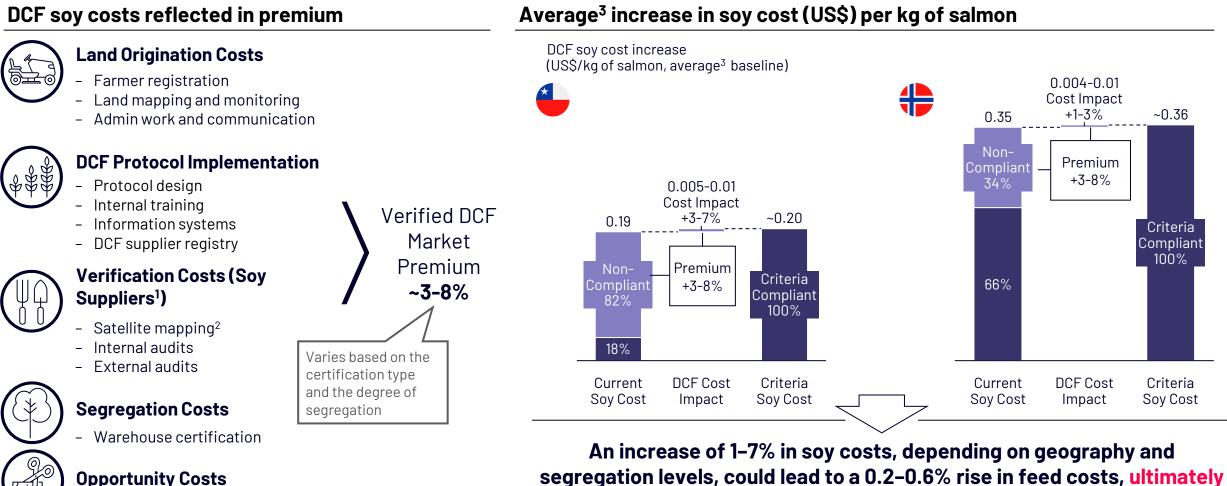
Soy sustainability challenges beyond the criteria's scope


- Full physical segregation and thirdparty verification is the preferred approach, though it is not currently feasible at scale
 - This could be established as a **goal for the medium or long-term**
 - Current criteria accepts mass balance
- The lack of visibility in indirect supply chains and verification at FOB remains unaddressed by the current criteria requirements
- These are **highly complex challenges** that demand a **more mature industry framework** for effective resolution

Strategic supplier selection will be essential to ensuring full compliance with criteria going forward

Note: (1) Certified DCF soy quantity considering both ProTerra and RTRS volumes for 2020 Source: USDA FAS; International Institute for sustainable development soybean report

The available volume of compliant soy in Norway and Chile is sufficient to meet criteria with no major challenges


Reaching the target volume for 2030 requires mobilizing additional suppliers to comply with the criteria; there could be additional compliant volume outside of the players currently trading in Norway and Chile

Note: We assume 100% of the volumes from compliant suppliers are compliant, as batch-level compliance is feasible due to suppliers' large production capacity and the relatively small demand from Chile and Norway. Source: Expert interviews

Achieving 100% DCF compliant soy could potentially increase salmon production costs ~0.1-0.2% for Chile and Norway

/ P R E L I M I N A R Y

resulting in a ~0.1–0.2% increase in salmon production costs

Note: Assumption: Volumes from compliant suppliers at the company level are considered 100% compliant; Rationale: Batch-level compliance is feasible given suppliers' large production capacities and the small share of demand from Chile and Norway; DCF – Deforestation and Conversion Free, (1) Suppliers/Traders, (2) GIS Company Check on Farms with satellite images, (3) Min Cost Based on Average 2019-2023, Max Cost based on Max cost/prices in same period; Source: WWF, CDP Forests, Macronutrient Companies Commitments, Feed Companies Commitments

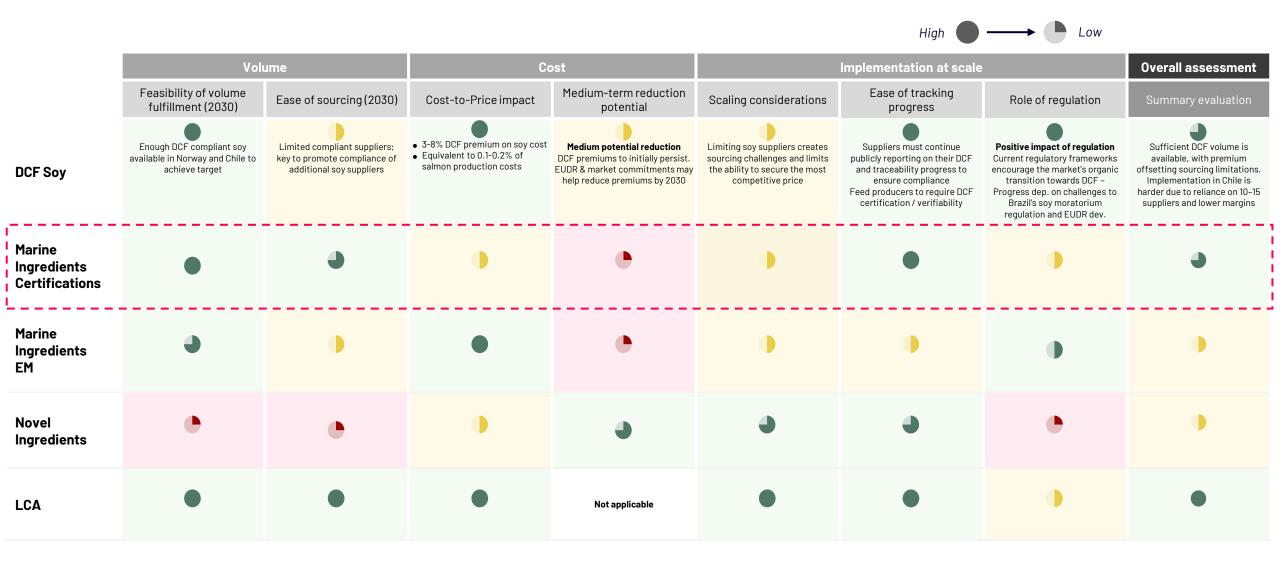
$\mathsf{C} ~\mathsf{O} ~\mathsf{N} ~\mathsf{T} ~\mathsf{E} ~\mathsf{N} ~\mathsf{T} ~\mathsf{S}$

Introduction and background

Overview of sourcing criteria

Sourcing criteria feasibility assessment

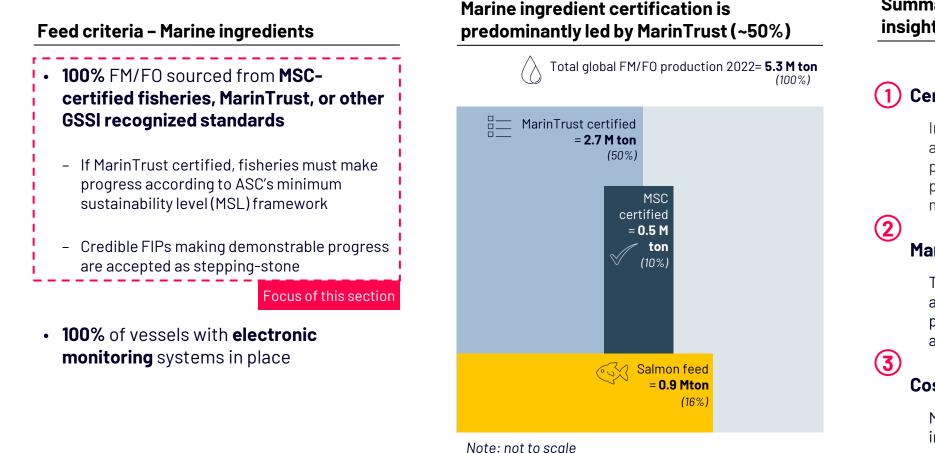
Soy


Marine ingredients

Novel ingredients

Life cycle assessments

<u>Feasibility assessment</u>: Marine ingredient certifications



There is sufficient certified volume in the market today, with MarinTrust more widely adopted than MSC

PRELIMINARY

Summary of stakeholder engagement insights

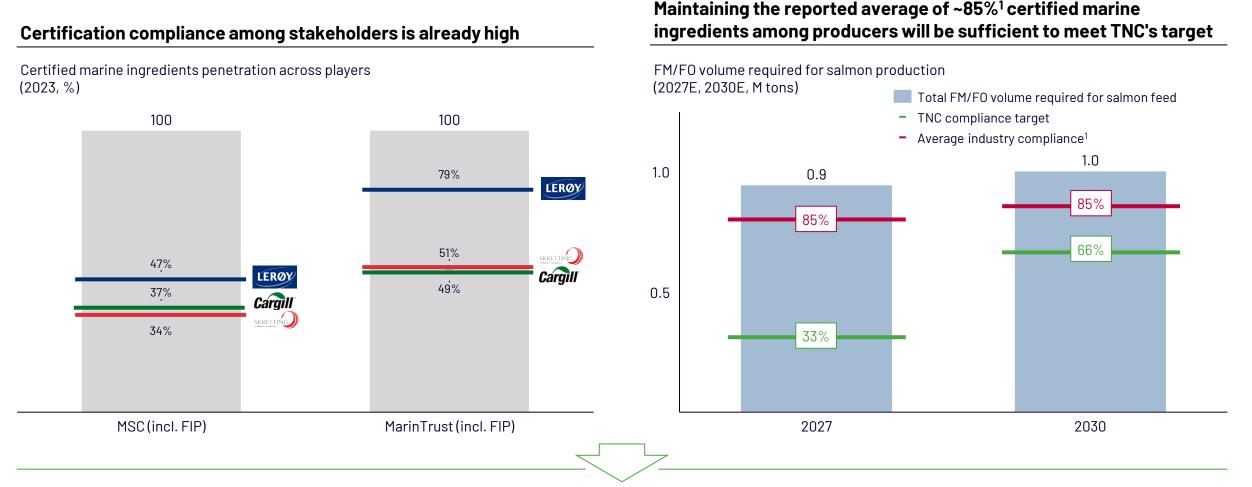
Certification feasibility

Industry views MarinTrust as more accessible from environmental performance and cost perspectives, but progress towards MSC is an end goal for many.

Market considerations

The market already mandates certifications as a prerequisite for access. Certification penetration is already high (+90% in Chile and Peru for MarinTrust)

Cost implications


Market recognizes the value of certified ingredients (3-12% premium)

The currently certified supply of marine ingredients seems enough to meet the demand for salmon feed; we anticipate ASC's MSL framework will increase available volumes of MSC-certified marine ingredients

Note: We calculate the FM/FO required for salmon feed as the total tons consumed by Chile and Norway (main feed producers). Source: MarinTrust website; MSC website; Expert interviews

Certification penetration is high among key industry players; sustaining and increasing compliance will be crucial going forward

Future success will depend on maintaining compliance and addressing barriers to certifications like MSC for forage fisheries

Note: 1. We assume an average industry certification compliance (85%) considering publicly reported percentage of total marine ingredients reported by Skretting (77%), Leroy (95%) and Cargill (89%), some of the biggest salmon feed & producer companies Source: Expert interviews; Company Websites

MSC-certified product carries the highest premium; even assuming 100% MSC-certified FMFO, salmon production costs could increase ~1.2-1.5% at maximum

' P R E L I M I N A R Y

Average² increase in MI cost (US\$) per kg of salmon MSC cost impact based on stages **Pre-Assessment** MI certification cost Certification body fees (US\$/kg of salmon, average1 baseline) 0.08 Data collection & analysis Cost Impact - Reporting +9% ~0.93 0.85 0.06 Consulting Cost Impact - Consultant fees ~0.75 +9% Action plan development 0.69 MT Premium Data mgmt., analysis and reporting Certified +9% 50% Premium MT **Improvement Projects** Certified +9% Criteria Investments (e.g., Gear changes) 50% Compliant Market Criteria 100% Compliant MSC Assessment premium 100% Certification body fees of ~9%1 Non-Certified Data collection & analysis Non-Certified 50% Stakeholder engagement 50% Public reporting & peer reviews **Certification Maintenance** MSC Cost MSC Cost Criteria Current Criteria Current - Annual audits **MI** Cost MI Cost Impact MI Cost MI Cost Impact Re-assessment every 5 years **MSC Royalties** Royalties based on certified volume Cost increase for 100% certified marine ingredients is ~9%. This results in

Opportunity Costs

Cost increase for 100% certified marine ingredients is ~9%. This results in an overall feed cost increase of ~2.8-3.3%, which translates to a ~1.2-1.5% rise in total salmon production costs

Note: MI – Marine Ingredients, MSC – Marine Stewardship Council, MT – MarinTrust; (1) 9% used as proxy for improvements [3% premium for MarinTrust, 12% premium for MSC](2) Min Cost Based on Average 2019-2023, Max Cost based on Max cost/prices in same period, (3) Assuming sourcing from 50% of global volume compliant; Source: MSC Certification Bodies, Expert Interviews

<u>Feasibility assessment</u>: Marine ingredients electronic monitoring

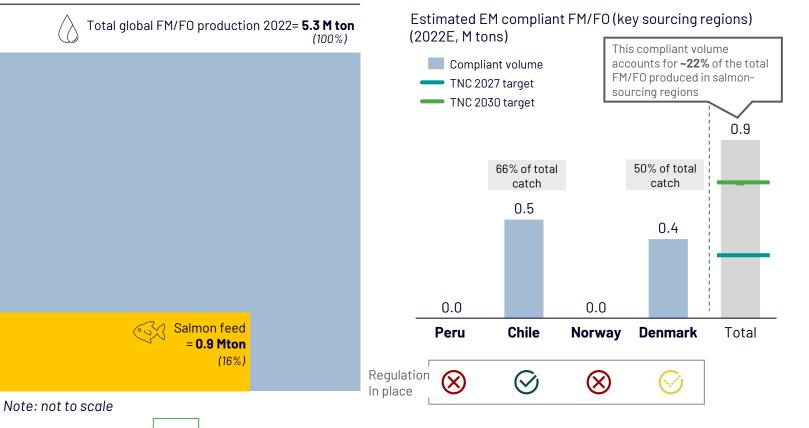
L

	Volume		Cost		Implementation at scale			Overall assessment	
	Feasibility of volume fulfillment (2030)	Ease of sourcing (2030)	Cost-to-Price impact	Medium-term reduction potential	Scaling considerations	Ease of tracking progress	Role of regulation	Summary evaluation	
DCF Soy	Enough DCF compliant soy available in Norway and Chile to achieve target	Limited compliant suppliers; key to promote compliance of additional soy suppliers	 3-8% DCF premium on soy cost Equivalent to 0.1-0.2% of salmon production costs 	Medium potential reduction DCF premiums to initially persist. EUDR & market commitments may help reduce premiums by 2030	Limiting soy suppliers creates sourcing challenges and limits the ability to secure the most competitive price	Suppliers must continue publicly reporting on their DCF and traceability progress to ensure compliance Feed producers to require DCF certification / verifiability	Positive impact of regulation Current regulatory frameworks encourage the market's organic transition towards DCF - Progress dep on challenges to Brazil's soy moratorium regulation and EUDR dev.	Sufficient DCF volume is available, with premium offsetting sourcing limitations Implementation in Chile is harder due to reliance on 10-15 suppliers and lower margins	
Marine Ingredients Certifications	Certification penetration high enough to cover required volume Certifications already a key factor for market access	Key players use a high % of certified ingredients (mainly MarinTrust) Forage fisheries face challenges in attaining MSC	 ~9% premium (MI costs -MSC as proxy) Equivalent to 1.2-1.5% of salmon production costs 	Low potential reduction Certified MI premium to persist (compensate implementation costs)	Efforts focus on advancing practices under the ASC MSL framework Players seek market recognition of certification / improvement costs	Feed companies should continue reporting the certification status of their marine ingredients Fisheries to report progress	Neutral impact of regulation Certifications not required by regulators	Certifications penetration already high Incentivize improved sustainability through premium Effort required to mobilize ASC MSL framework	
Marine Ingredients EM	•	•	٠	٠	•	•	•	•	
Novel ingredients	٠	٠	•	٩	•	•	٠	٠	
LCA	•	•	•	Not applicable	•	•	•	٠	

EM-compliant FM/FO volumes appear sufficient for salmon feed demand, but improving compliance in Peru and Norway is vital for long-term sustainability

EM adoption varies significantly across

regions where we source for salmon


Feed criteria address two dimensions of marine ingredients for compliance

- 100% FM/FO sourced from MSCcertified fisheries, MarinTrust, or other GSSI recognized standards
 - If MarinTrust certified, fisheries must make progress according to ASC's minimum sustainability level (MSL) framework
 - Credible FIPs making demonstrable progress are accepted as stepping-stone

100% of vessels with **electronic monitoring** systems in place

Focus of this section

Salmon feed demand of FM/FO is a small percentage (16%) of the global production

While compliance could technically be achieved using volumes from Chile and Denmark, it is unlikely due to competition from other markets (e.g., China) and industries (e.g., nutraceuticals) for these raw materials

Driving Peru and Norway's compliance is key, considering relevance for FM/FO supply

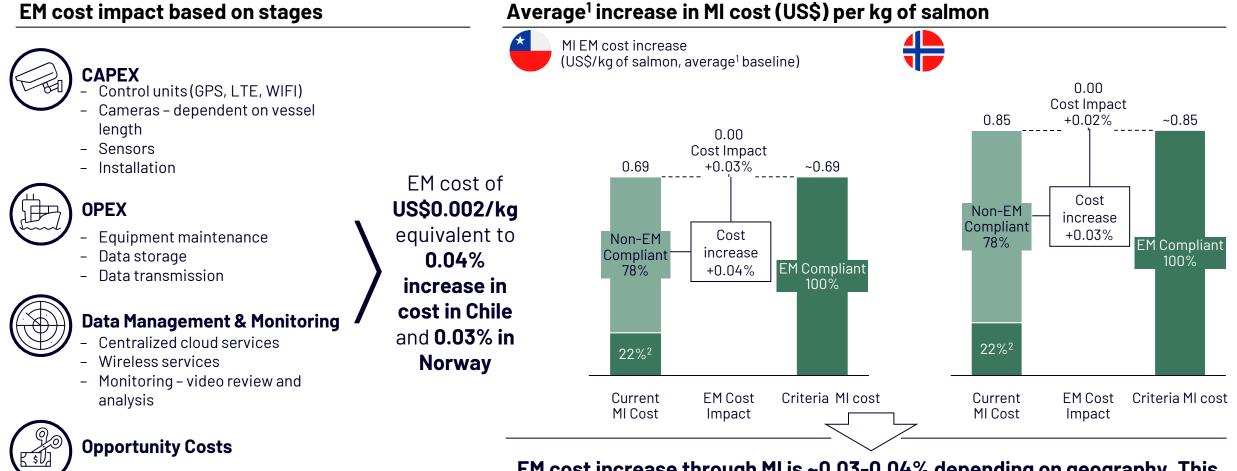
Summary of stakeholder engagement insights

EM perception

Privacy concerns and the risk of penalties linked with EM installation and continuous monitoring pose barriers to broader implementation. However, regulation has been a major driver of adoption.

Implementation challenges

Feed companies have limited leverage to mandate compliance with EM monitoring.


Cost implications

Implementation costs are typically assumed entirely by fisheries without government support, making market value recognition of EM a potential lever for adoption.

Potential cost increase from EM is ~US\$0.002/kg of MI, covering annualized CAPEX and OPEX, negligible against total salmon production costs

PRELIMINARY

EM cost increase through MI is ~0.03-0.04% depending on geography. This results in an overall feed cost increase of ~0.01%, which translates to an ~0.004% rise in total salmon production costs

Note: FM – Fishmeal, FO- Fish Oil, MI – Marine Ingredients, EM – Electronic Monitoring; (1) Min Cost Based on Average 2019–2023, Max Cost based on Max cost/prices in same period, (2) Assuming global sourcing of FM/FO is available Source: EM hardware and maintenance service providers, Sernapesca, NOAA, Lit. Research

C ~ O ~ N ~ T ~ E ~ N ~ T ~ S

Introduction and background

Overview of sourcing criteria

Sourcing criteria feasibility assessment

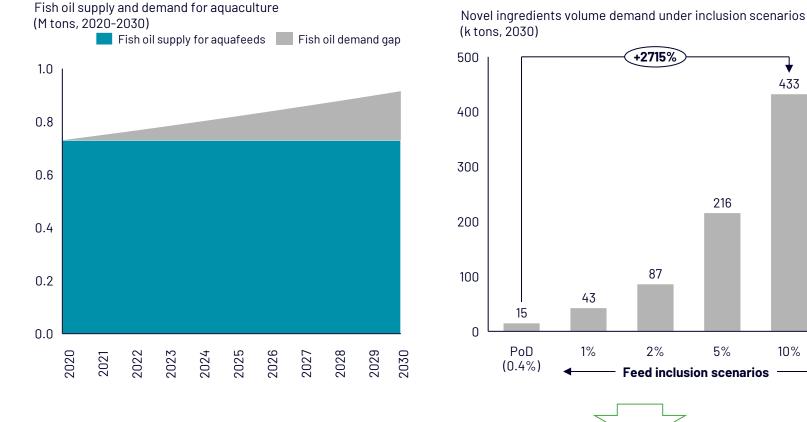
Soy

Marine ingredients

Novel ingredients

Life cycle assessments

Feasibility assessment: Novel ingredients


High Low

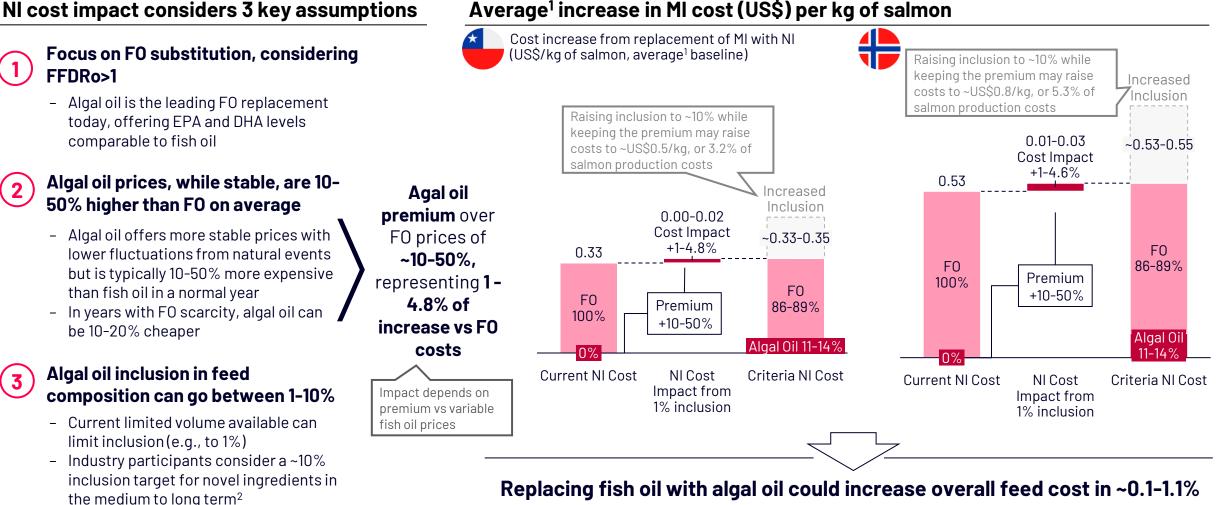
	Volume		Cost			Overall assessment		
	Feasibility of volume fulfillment (2030)	Ease of sourcing (2030)	Cost-to-Price impact	Medium-term reduction potential	Scaling considerations	Ease of tracing progress	Role of regulation	Summary evaluation
DCF Soy	Enough DCF compliant soy available in Norway and Chile to achieve target	Limited compliant suppliers; key to promote compliance of additional soy suppliers	 3-8% DCF premium on soy cost Equivalent to 0.1-0.2% of salmon production costs 	Medium potential reduction DCF premiums to initially persist. EUDR & market commitments may help reduce premiums by 2030	Limiting soy suppliers creates sourcing challenges and limits the ability to secure the most competitive price	Suppliers must continue publicly reporting on their DCF and traceability progress to ensure compliance Feed producers to require DCF certification / verifiability	Positive impact of regulation Current regulatory frameworks encourage the market's organic transition towards DCF - Progress dep on challenges to Brazil's soy moratorium regulation and EUDR dev.	Sufficient DCF volume is available, with premium offsetting sourcing limitations Implementation in Chile is harder due to reliance on 10–15 suppliers and lower margins
Marine Ingredients Certifications	Certification penetration high enough to cover required volume Certifications already a key factor for market access	Key players use a high % of certified ingredients (mainly Marine Trust) Forage fisheries face challenges in attaining MSC	 ~9% premium (MI costs -MSC as proxy) Equivalent to 1.2-1.5% of salmon production costs 	Low potential reduction Certified MI premium to persist (compensate implementation costs)	Efforts focus on advancing practices under the ASC MSL framework Players seek market recognition of certification / improvement costs	Feed companies should continue reporting the certification status of their marine ingredients Fisheries to report progress	Neutral impact of regulation Certifications not required by regulators	Certifications penetration already high Incentivize improved sustainability through premium Effort required to mobilize ASC MSL framework
Marine Ingredients EM	EM-compliant volumes are sufficient for salmon feed, but competition from other sources require growing EM compliance	Establishing EM compliance in Peru and Norway is crucial to facilitate sourcing (converting a few vessels can have a sizable impact)	 +US\$0.002 over price per kg of MI Equivalent to ~0.004% of salmon production costs - potential mkt premium TBD 	Low potential reduction EM implementation costs to remain constant in medium term	Requires overcoming EM concerns (e.g., legal risks, fines) and mobilizing Peru and Norway Low adoption by artisinal fleets	Feed suppliers to require EM certification / auditing of marine ingredients (e.g., through a third party) - not an established standard in Peru and Norway	Positive impact of regulation Existing regulatory frameworks in Chile and Denmark, no current regulatory frameworks in Peru and Norway	Require Peru and Norway volumes with EM Costs are negligible TBD if premium needed to promote adoption
I Novel Ingredients	٠	٠	•	٩	٩	٩	٠	
LCA	٠	•	٠	Not applicable	•	٠	•	•

Achieving a higher inclusion of novel ingredients in the feed mix will be challenging considering current players' capacity

Even assuming FO supply remains constant, there will be a gap in supply that can be covered by novel ingredients

Additional novel ingredients volume required for salmon feed will vary depending on inclusion scenarios

Summary of insights from NI stakeholder discussions


- The aquaculture industry is not the primary buyer of novel ingredients; pet food and human consumption offer greater price premiums
- Therefore, achieving price competitiveness with FM/F0 requires greater scale; no company currently operates with the capacity to make a significant impact
- · Scaling is straightforward but demands significant Capex, requiring investors willing to fund expansion
- Long-term market stability and market commitments will be crucial for securing future financing

Increasing the inclusion of novel ingredients in salmon feed requires resolving scalability challenges for producers

Algal oil inclusion could potentially increase salmon production costs in ~0.3- 0.5%, depending on the level of inclusion (1-10%)

/ P R E L I M I N A R Y

Replacing fish oil with algal oil could increase overall feed cost in ~0.1-1.1% depending on geography, ~0.3-0.5% increase in salmon production costs

31

$\mathsf{C} ~\mathsf{O} ~\mathsf{N} ~\mathsf{T} ~\mathsf{E} ~\mathsf{N} ~\mathsf{T} ~\mathsf{S}$

Introduction and background

Overview of sourcing criteria

Sourcing criteria feasibility assessment

Soy

Marine ingredients

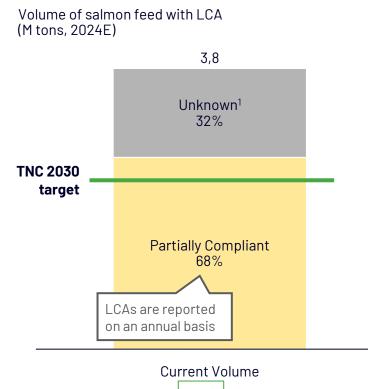
Novel ingredients

Life cycle assessments

Feasibility assessment: Life cycle assessments (LCAs)

High Low

	Volume		C	ost		Overall assessment		
	Feasibility of volume fulfillment (2030)	Ease of sourcing (2030)	Cost-to-Price impact	Medium-term reduction potential	Scaling considerations	Ease of tracking progress	Role of regulation	Summary evaluation
DCF Soy	Enough DCF compliant soy available in Norway and Chile to achieve target	Limited compliant suppliers; key to promote compliance of additional soy suppliers	a a loss a seconda contra a contra	Medium potential reduction DCF premiums to initially persist. EUDR & market commitments may help reduce premiums by 2030	Limiting soy suppliers creates sourcing challenges and limits the ability to secure the most competitive price	Suppliers must continue publicly reporting on their DCF and traceability progress to ensure compliance Feed producers to require DCF certification / verifiability	Positive impact of regulation Current regulatory frameworks encourage the market's organic transition towards DCF - Progress dep on challenges to Brazil's soy moratorium regulation and EUDR dev.	Sufficient DCF volume is available, with premium offsetting sourcing limitations Implementation in Chile is harder due to reliance on 10-15 suppliers and lower margins
Marine ingredients Certifications	Certification penetration high enough to cover required volume Certifications already a key factor for market access	certified ingredients (mainly	 ~9% premium (MI costs -MSC as proxy) Equivalent to 1.2-1.5% of salmon production costs 	Low potential reduction Certified MI premium to persist (compensate implementation costs)	Efforts focus on advancing practices under the ASC MSL framework Players seek market recognition of certification / improvement costs	Feed companies should continue reporting the certification status of their marine ingredients Fisheries to report progress	Neutral impact of regulation Certifications not required by regulators	Certifications penetration already high Incentivize improved sustainability through premium Effort required to mobilize ASC MSL framework
Marine Ingredients EM	EM-compliant volumes are sufficient for salmon feed, but competition from other sources require growing EM compliance	Peru and Norway is crucial to	 +US\$0.002 over price per kg of MI Equivalent to ~0.004% of salmon production costs - potential mkt premium TBD 	Low potential reduction EM implementation costs to remain constant in medium term	Requires overcoming EM concerns (e.g., legal risks, fines) and mobilizing Peru and Norway Low adoption by artisan fleets	Feed suppliers to require EM certification / auditing of marine ingredients (e.g., through a third party) - not an established standard in Peru and Norway	Positive impact of regulation Existing regulatory frameworks in Chile and Denmark, no current regulatory frameworks in Peru and Norway	Require Peru and Norway volumes with EM Costs are negligible TBD if premium needed to promote adoption
Novel Ingredients	Current capacity is limited, coupled with competition from other industries	A clear market signal will be	 10-50% premium over regular MI prices1 Equivalent to 0.3-0.5% of production costs for 1% inclusion (if % inclusion high impact can be ~5%) 	High potential reduction Advanced market commitments (AMCs) aid growth of sub-scaled production, reducing costs	Advanced market commitments can signal demand and support capacity expansion	Feed companies to report novel ingredient inclusion and continue tracking & reporting FFDR progress	Unfavorable impact of regulation Current regulatory frameworks are strict, hindering widespread adoption	Limited capacity today Advanced market commitments can support the required volume expansion
LCA	•	٠	٠	Not applicable	•	٠		•


Life Cycle Assessment adoption by salmon feed suppliers is high and sufficient to comply with feed criteria

Feed criteria defines LCA frequency for feed and novel ingredients

- LCA measurements for feed and novel ingredients, including carbon footprint, and conducted via globally-recognized methodology*
 - Feed footprints should be aggregated and reported quarterly
 - LCAs for novel ingredients should be requested from suppliers at least once a year
- Carbon footprint for feed must not exceed an absolute upper limit per kilogram**

Currently ~68% of volume in the industry incorporates LCAs in their reporting

Moving forward, there are no significant challenges to increase reporting frequency

"We usually generate a report annually, but still, **we** already give some of our customers partial reports during the year, so doing this [reporting LCAs quarterly] would imply no cost at all." Sustainability Leader, Feed Producer 1

"I think **quarterly is good** (..) it fits better into the farming calendar of our customers as well and the lifecycle of the salmon, and **it seems like a reasonable middle ground between granularity and practicality**."

Sustainability Leader, Feed Producer 2

"We are **already conducting LCAs biannually**, as are most leading companies in the industry (...) **increasing the frequency would not significantly impact costs.**"

Business Development Leader, Novel Ingredients Producer

Transitioning to quarterly LCAs should require minimal to no additional effort or cost for the world's largest feed producers, and transitioning those players' reporting would be enough to achieve compliance fulfillment

* Note: For example, PEFCR. **Note: For example, the forthcoming BAP Vanguard standard will establish an absolute emissions limit for salmon feed. (1) No information found on LCA publications; We are calculating volume compliance considering each player's market share using their installed capacity Source: Company reports; Intrafish; Salmon Business

$\mathsf{C} ~\mathsf{O} ~\mathsf{N} ~\mathsf{T} ~\mathsf{E} ~\mathsf{N} ~\mathsf{T} ~\mathsf{S}$

Introduction and background

Overview of sourcing criteria

Sourcing criteria feasibility assessment

Soy

Marine ingredients

Novel ingredients

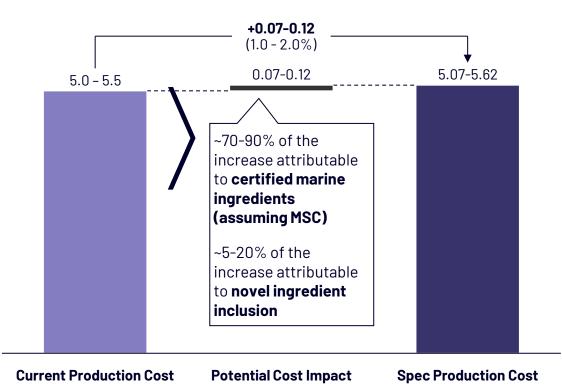
Life cycle assessments

Feasibility assessment: Overall summary

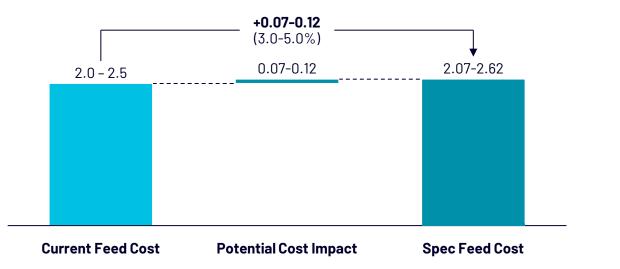
High \longrightarrow Low

	Volume		Cost			Overall assessment		
	Feasibility of volume fulfillment (2030)	Ease of sourcing (2030)	Cost-to-Price impact	Medium-term reduction potential	Scaling considerations	Ease of tracing progress	Role of regulation	Summary evaluation
DCF Soy	Enough DCF compliant soy available in Norway and Chile to achieve target	Limited compliant suppliers; key to promote compliance of additional soy suppliers	 3-8% DCF premium on soy cost Equivalent to 0.1-0.2% of salmon production costs 	Medium potential reduction DCF premiums to initially persist. EUDR & market commitments may help reduce premiums by 2030	Limiting soy suppliers creates sourcing challenges and limits the ability to secure the most competitive price	Suppliers must continue publicly reporting on their DCF and traceability progress to ensure compliance Feed producers to require DCF certification / verifiability	Positive impact of regulation Current regulatory frameworks encourage the market's organic transition towards DCF – Progress dep on challenges to Brazil's soy moratorium regulation and EUDR dev.	Sufficient DCF volume is available, with premium offsetting sourcing limitations Implementation in Chile is harder due to reliance on 10-15 suppliers and lower margins
Marine ingredients Certifications	Certification penetration high enough to cover required volume Certifications already a key factor for market access	Key players use a high % of certified ingredients (mainly Marine Trust) Forage fisheries face challenges in attaining MSC	 ~9% premium (MI costs -MSC as proxy) Equivalent to 1.2-1.5% of salmon production costs 	Low potential reduction Certified MI premium to persist (compensate implementation costs)	Efforts focus on advancing practices under the ASC MSL framework Players seek market recognition of certification / improvement costs	Feed companies should continue reporting the certification status of their marine ingredients Fisheries to report progress	Neutral impact of regulation Certifications not required by regulators	Certifications penetration already high Incentivize improved sustainability through premium Effort required to mobilize ASC MSL framework
Marine Ingredients EM	EM-compliant volumes are sufficient for salmon feed, but competition from other sources require growing EM compliance	Establishing EM compliance in Peru and Norway is crucial to facilitate sourcing (converting a few vessels can have a sizable impact)	 +US\$0.002 over price per kg of MI Equivalent to ~0.004% of salmon production costs - potential mkt premium TBD 	Low potential reduction EM implementation costs to remain constant in medium term	Requires overcoming EM concerns (e.g., legal risks, fines) and mobilizing Peru and Norway Low adoption by artisan fleets	Feed suppliers to require EM certification / auditing of marine ingredients (e.g., through a third party) - not an established standard in Peru and Norway	Positive impact of regulation Existing regulatory frameworks in Chile and Denmark, no current regulatory frameworks in Peru and Norway	Require Peru and Norway volumes with EM Costs are negligible TBD if premium needed to promote adoption
Novel Ingredients	Current capacity is limited, coupled with competition from other industries	Fragmented industry A clear market signal will be essential for capacity expansion	 10-50% premium over regular MI prices1 Equivalent to 0.3-0.5% of production costs for 1% inclusion (if % inclusion high impact can be ~5%) 	High potential reduction Advanced market commitments (AMCs) aid growth of sub-scaled production, reducing costs	Advanced market commitments can signal demand and support capacity expansion	Feed companies to report novel ingredient inclusion and continue tracking FFDR progress	Unfavorable impact of regulation Current regulatory frameworks are strict, hindering widespread adoption	Limited capacity today Advanced market commitments can support the required volume expansion
LCA	Salmon feed suppliers widely adopt LCAs; transitioning to quarterly updates requires minimal effort or cost	LCA is widely adopted by feed producers, with novel ingredient companies also viewing it as a requirement	 Negligible costs No impact in salmon production costs 	Not applicable - Negligible cost	Low effort required to increase reporting frequency and promoting use in feed mix decisions	Feed and novel ingredient companies should continue reporting footprint results	Neutral impact of regulation LCAs not required by regulators	Enough LCA compliant volume and willingness to increase frequency (with negligible cost)

Implementing the criteria could result in an upcharge of US\$7-12 cents per kg of salmon, representing 1-2% of salmon production costs

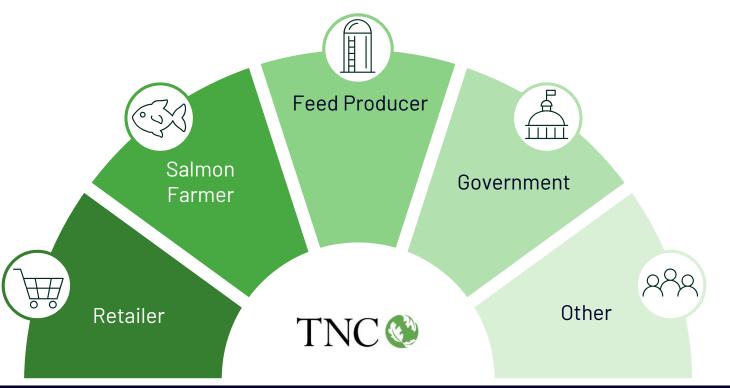


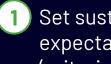
/ P R E L I M I N A R Y


Sustainability efforts in salmon feed can imply a potential upcharge of US\$7–12 cents...

Feed Cost per Kg of Salmon, (US\$/Kg of Salmon, Annual, Average¹ Baseline)

...equivalent to 1-2% increase in salmon production costs


Production Cost per Kg of Salmon, (US\$/Kg of Salmon, Annual, Average¹ Baseline)


TNC is committed to supporting value chain alignment by facilitating collaboration to establish common commitments & drive action

3

Key actions

Set sustainability expectations (criteria definition)

Facilitate alignment across the value chain

In support of modest sustainability premium, communicate major cost drivers to industry actors

Collaborate on 'playbook' or roadmaps to comply with commitments

Oversee continuous program progress

We aim to engage industry leaders in the initiative to establish a new standard of feed sustainability across the industry

Why should you care?

Enhanced **reputation & positioning as sustainability leader**

Lowering our impact on critical marine and terrestrial ecosystems

Lower supply chain risk

Increased market access and/or recognition and differentiated product

Improved scientific and biological data

Diversified cost risk through novel ingredients inclusion Join us – scan to confirm your interest!

